Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.
نویسنده
چکیده
Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of several tested chlorophenols with the coconsumption of NADH and oxygen. In addition to chlorophenols, the enzyme also hydroxylated some chloro-p-hydroquinones with the coconsumption of NADH and oxygen. Apparently, the single enzyme was responsible for converting 2,4,5-trichlorophenol to 2,5-dichloro-p-hydroquinone and then to 5-chlorohydroxyquinol (5-chloro-1,2,4-trihydroxybenzene). Component A had a molecular weight of 22,000 and contained flavin adenine dinucleotide. Component A alone catalyzed NADH-dependent cytochrome c reduction, indicating that it had reductase activity. Component B had a molecular weight of 58,000, and no catalytic activity has yet been shown by itself.
منابع مشابه
Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.
Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were sep...
متن کاملIsolation and Characterization of Burkholderia Cepacia Strains from Hospitalized Patients in the Hospitals of West Guilan Province
Abstract Background and Objective: Burkholderia cepacia complex (BCC) is a plant pathogen that is an important mortality factor in immune-compromised and hospitalized patients. We aimed to Isolate and Characterize the Burkholderia Cepacia Strains from Hospitalized Patients in the Hospitals of West Guilan Province. Material and Methods: This study was conducted on 90 saliva and blood ...
متن کاملPure Culture of Pseudomonas cepacia
A pure culture of Pseudomonas cepacia, designated AC1100, that can utilize 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as its sole source of carbon and energy was isolated. An actively growing culture of AC1100 was able to degrade more than 97% of 2,4,5-T, present at 1 mg/ml, within 6 days as determined by chloride release, gas chromatographic, and spectrophotometric analyses. The ability of AC...
متن کاملCloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp. strain B13.
A 3,167-bp PstI fragment of genomic DNA from Pseudomonas sp. strain B13 was cloned and sequenced. The gene clcE consists of 1,059 nucleotides encoding a protein of 352 amino acids with a calculated mass of 37,769 Da which showed maleylacetate reductase activity. The protein had significant sequence similarities with the polypeptides encoded by tcbF of pP51 (59.4% identical positions), tfdF of p...
متن کاملStructural and Catalytic Differences between Two FADH2-Dependent Monooxygenases: 2,4,5-TCP 4-Monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-Monooxygenase (TcpA) from Cupriavidus necator JMP134
2,4,5-TCP 4-monooxygenase (TftD) and 2,4,6-TCP 4-monooxygenase (TcpA) have been discovered in the biodegradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP). TcpA and TftD belong to the reduced flavin adenine dinucleotide (FADH(2))-dependent monooxygenases and both use 2,4,6-TCP as a substrate; however, the two enzymes produce different end products. TftD catalyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 9 شماره
صفحات -
تاریخ انتشار 1996